Want to learn and practice this material in a more interactive way? Check out my new project, Chemiatria!
Combination reaction describes a reaction
like this:
A + B → C
in which two or more reactants become one product (are combined). The
problem with this term is that it doesn't give you much chemical
insight because there are many different types of reactions that
follow this pattern. So we'll break it into groups that reflect
what's actually happening a little better.
In this category, an elemental metal and an elemental non-metal
react to make an ionic substance that is neutral and has each ion in
its correct charge state or valence. For instance,
2Na(s) + Cl2(g) → 2NaCl(s)
2Mg(s) + O2(g) → 2MgO(s)
2Al(s) + 3O2(g) → Al2O3(s)
If the metal is a transition metal, it will be much harder to predict
the correct charge on the metal ion in the ionic compound. You can
check the element info in the nomenclature section or the links from
the periodic table section. As you
practice, you'll start to get a sense for what common charges are,
but even then it is often good to check, because it might not be
what you expect! For example, what's the
charge on iron in Fe3O4 (magnetite)?
Under what circumstances do these reactions happen? Often, an elemental metal and non-metal "want" to make an ionic compound, because this is a more stable state (think about a heavy ball on a table: it can easily roll to the ground, where it has less potential energy, so the table isn't a stable state; if the heavy ball is in a small hole in the ground, it can't easily move, and if it did, it would have more potential energy, so the hole is a stable, low energy state). However, that doesn't necessarily mean the reaction will just happen on its own. That depends on how easily the reaction can happen (think about a place you want to go, but don't go because travelling there is very inconvenient). For instance, the alkali metals and the halogens react pretty easily, so they will often react even without a "push". Oxygen is very reactive, which is why things burn, but you have to light them on fire to get them started. This is good, because otherwise we would burn in air at room temperature! Many of these elemental combination reactions might need a high temperature to get started, even if they want to happen. It won't be hard to remember that alkalis, alkaline earth metals and halogens react easily, because this is why they are very hard to find in elemental form! Oxygen and nitrogen are very abundant in elemental form because it is hard for them to react even if they want to. Nitrogen in particular reacts only with lithium metal and a few complicated compounds at room temperature, although it will react with many other elements at high temperatures. Most metals aren't found in elemental form in nature (except for ones that don't want to react, like gold), but if you find them in elemental form in your house, then probably they don't react easily.
These reactions involve elemental forms of elements like H, C, N,
O, Cl, S, P, etc. It will often be hard to predict the product
because these elements can often combine in different ratios (this
is where the law of multiple
proportions comes from!). You can always expect that H will have
a valence of 1, and O will usually have a valence of 2. Many of
these reactions will happen quickly if you get them started with a
little heat, especially if oxygen or a halogen is
involved. Otherwise, they might happen very slowly or not at all
except under special circumstances that we will talk more about
later. Some examples:
C(s) + O2(g) → CO2(g) (fast, once lit)
N2(g) + 3H2(g) → 2NH3(g) (very slow
usually)
Basic anhydrides are compounds that turn into
a base (a hydroxide salt) when you add
water. They are metal oxides. Here's an example:
CaO(s) + H2O(l) → Ca(OH)2(aq)
If the metal is an alkali or alkaline earth, the reaction probably
happens quickly and produces a lot of heat. If the metal is a
transition metal, the reaction might not happen so easily or at
all.
Acid anhydrides are compounds that turn into an acid when you add
water. They are non-metal oxides. These are a little more
complicated than basic anhydrides, so don't worry too much about
them right now. Here's an example:
SO3(g) + H2O(l) →
H2SO4(aq)
There are many other circumstances in which a combination reaction could happen. The types listed here are the simple ones that are good to know in the beginning.